Tumblelog by Soup.io
Newer posts are loading.
You are at the newest post.
Click here to check if anything new just came in.

September 13 2019

8413 03ca
Reposted fromfungi fungi

September 09 2019

5798 cbec 500
Reposted fromfungi fungi
Reposted fromFlau Flau

September 03 2019

2300 99ef
Reposted fromfungi fungi

August 26 2019

5074 c064 500
Reposted fromEtnigos Etnigos viaKrzychulec Krzychulec

August 19 2019

2985 eda1 500
Reposted fromfungi fungi

August 07 2019



August 05 2019

9823 b56e 500
Reposted fromciarka ciarka viairmelin irmelin
Reposted fromFlau Flau vianaich naich

July 23 2019

2087 d2f2 500
Reposted frompunisher punisher viasssss sssss
5836 1a10 500
Reposted fromfungi fungi

July 15 2019

0044 c7dc 500
Reposted fromKrebs Krebs vianaich naich

July 12 2019

8291 6d1b 500
Reposted fromEwkaLoL EwkaLoL viatonietak tonietak

July 09 2019

5846 b8ba 500
Reposted fromexistential existential

July 01 2019

  • If the Sun were made of bananas, it would be just as hot

    The Sun is hot because its enormous weight – about a billion billion billion tons – creates vast gravity, putting its core under colossal pressure. Just as a bicycle pump gets warm when you pump it, the pressure increases the temperature. Enormous pressure leads to enormous temperature.
    If, instead of hydrogen, you got a billion billion billion tons of bananas and hung it in space, it would create just as much pressure, and therefore just as high a temperature. So it would make very little difference to the heat whether you made the Sun out of hydrogen, or bananas, or patio furniture.
    (Edit: this might be a little confusing. The heat caused by the internal pressure would be similar to that of our Sun. However, if it's not made of hydrogen, the fusion reaction that keeps it going wouldn't get under way: so a banana Sun would rapidly cool down from its initial heat rather than burning for billions of years.)

  • All the matter that makes up the human race could fit in a sugar cube

    Atoms are 99.9999999999999% empty space.
    If you forced all the atoms together, removing the space between them, crushing them down, a single teaspoon or sugar cube of the resulting mass would weigh five billion tons; about ten times the weight of all the humans who are currently alive.
    Incidentally, that is exactly what has happened in a neutron star, the super-dense mass left over after a certain kind of supernova.

  • Events in the future can affect what happened in the past

    According to an experiment proposed by the physicist John Wheeler in 1978 and carried out by researchers in 2007, observing a particle now can change what happened to another one – in the past.
    According to the double slit experiment, if you observe which of two slits light passes through, you force it to behave like a particle. If you don’t, and observe where it lands on a screen behind the slits, it behaves like a wave.
    But if you wait for it to pass through the slit, and then observe which way it came through, it will retroactively force it to have passed through one or the other. In other words, causality is working backwards: the present is affecting the past.
    Of course in the lab this only has an effect over indescribably tiny fractions of a second. But Wheeler suggested that light from distant stars that has bent around a gravitational well in between could be observed in the same way: which could mean that observing something now and changing what happened thousands, or even millions, of years in the past.

  • Almost all of the Universe is missing

    There is an awful lot of visible matter in the Universe. But it only accounts for about two per cent of its mass.
    We know there is more, because it has gravity. Despite the huge amount of visible matter, it is nowhere near enough to account for the gravitational pull we can see exerted on other galaxies. The other stuff is called “dark matter”, and there seems to be around six times as much as ordinary matter.
    To make matters even more confusing, the rest is something else called “dark energy”, which is needed to explain the apparent expansion of the Universe. Nobody knows what dark matter or dark energy is.

  • Things can travel faster than light; and light doesn’t always travel very fast

    The speed of light in a vacuum is a constant: 300,000km/second. However, light does not always travel through a vacuum. In water, for example, photons travel at around three-quarters that speed.
    In nuclear reactors, some particles are forced up to very high speeds, often within a fraction of the speed of light. If they are passing through an insulating medium that slows light down, they can actually travel faster than the light around them.
    When this happens, they cause a blue glow, known as Cherenkov radiation, which is (sort of) comparable to a sonic boom but with light. This is why nuclear reactors glow in the dark.
    Incidentally, the slowest light has ever been recorded travelling was 17 meters per second – about 38 miles an hour – through rubidium cooled to almost absolute zero, when it forms a strange state of matter called a Bose-Einstein condensate.

  • There are an infinite number of mes writing this, and an infinite number of yous reading it

    According to the current standard model of cosmology, the observable universe – containing all the billions of galaxies and trillions upon trillions of stars mentioned above – is just one of an infinite number of universes existing side-by-side, like soap bubbles in a foam.
    Because they are infinite, every possible history must have played out. But more than that, the number of possible histories is finite, because there have been a finite number of events with a finite number of outcomes. The number is huge, but it is finite. So this exact event, where this author writes these words and you read them, must have happened an infinite number of times.

  • Black holes aren’t black

    They’re very dark, sure, but they aren’t black. They glow, slightly, giving off light across the whole spectrum, including visible light.
    This radiation is calledHawking radiation, after the former Lucasian Professor of Mathematics at Cambridge University Stephen Hawking, who first proposed its existence. Because they are constantly giving this off, and therefore losing mass, black holes will eventually evaporate altogether if they don’t have another source of mass to sustain them; for example interstellar gas or light.

  • The fundamental description of the universe does not account for a past, present or future

    According to the special theory of relativity, there is no such thing as a present, or a future, or a past. Time frames are relative: I have one, you have one, the third planet of Gliese 581 has one. Ours are similar because we are moving at similar speeds.
    If we were moving at very different speeds, we would find that one of us aged quicker than the other. Similarly, if one of us was closer than the other to a major gravity well like the Earth, we would age slower than someone who wasn’t.
    GPS satellites, of course, are both moving quickly and at significant distances from Earth. So their internal clocks show a different time to the receivers on the ground. A lot of computing power has to go into making your sat-nav work around the theory of special relativity.

  • A particle here can affect one on the other side of the universe, instantaneously

    When an electron meets its antimatter twin, a positron, the two are annihilated in a tiny flash of energy. Two photons fly away from the blast.
    Subatomic particles like photons and quarks have a quality known as “spin”. It’s not that they’re really spinning – it’s not clear that would even mean anything at that level – but they behave as if they do. When two are created simultaneously the direction of their spin has to cancel each other out: one doing the opposite of the other.
    Due to the unpredictability of quantum behaviour, it is impossible to say in advance which will go “anticlockwise” and the other “clockwise”. More than that, until the spin of one is observed, they are both doing both.
    It gets weirder, however. When you do observe one, it will suddenly be going clockwise or anticlockwise. And whichever way it is going, its twin will start spinning the other way, instantly, even if it is on the other side of the universe. This has actually been shown to happen in experiment (albeit on the other side of a laboratory, not a universe).

  • The faster you move, the heavier you get

    If you run really fast, you gain weight. Not permanently, or it would make a mockery of diet and exercise plans, but momentarily, and only a tiny amount.
    Light speed is the speed limit of the universe. So if something is travelling close to the speed of light, and you give it a push, it can’t go very much faster. But you’ve given it extra energy, and that energy has to go somewhere.
    Where it goes is mass. According to relativity, mass and energy are equivalent. So the more energy you put in, the greater the mass becomes. This is negligible at human speeds – Usain Bolt is not noticeably heavier when running than when still – but once you reach an appreciable fraction of the speed of light, your mass starts to increase rapidly.

    (Source: The 10 weirdest physics facts, from relativity to quantum physics - Telegraph)
  • Reposted fromikari ikari vianerdanel nerdanel

    June 25 2019

    0723 c19c 500
    Reposted frompunisher punisher viajanuschytrus januschytrus

    June 24 2019

    3203 d3f8 500
    Instagram: booksididnt
    Reposted fromPoranny Poranny viadesinteressement desinteressement
    6896 1f41 500
    2982 c6c0 500
    Reposted frommangoe mangoe vianaich naich
    2918 8da6 500
    Reposted frommachinae machinae vianaich naich
    Older posts are this way If this message doesn't go away, click anywhere on the page to continue loading posts.
    Could not load more posts
    Maybe Soup is currently being updated? I'll try again automatically in a few seconds...
    Just a second, loading more posts...
    You've reached the end.

    Don't be the product, buy the product!